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What is libEnsemble

I libEnsemble is a software library to coordinate the concurrent
evaluation of ensembles of calculations.

I libEnsemble uses a manager to allocate work to various workers.

I A libEnsemble worker is the smallest indivisible unit to perform
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libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f.

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f.

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available.
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libEnsemble dependencies

I Python 2.7, 3.4 or above.

I An MPI 1.x/2.x/3.x implementation (e.g., MPICH or OpenMPI) built
with shared/dynamic libraries.

I mpi4py v2.0.0 or above.

I NumPy v1.10 or above.
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libEnsemble overview
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Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers
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Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)
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Why libEnsemble and not. . . ?

Dakota: I Few simulation optimization generators.
I C++

Swift: (the parallel scripting language)
I “Can run million programs, thousands at a time, launching

hundreds per second.”
I Require writing your generators in Swift’s scripting language.
I Difficult to tightly couple generation of inputs and future/active

running simulations.
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Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points

Tons of system-dependent caveats
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Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points
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Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points

64 nodes × 16 cores = 1024-1 workers
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Use cases

I A user wants to optimize a function that depends on a simulation.
I The simulation is already using parallel resources, but not a large

fraction of some computer.
I libEnsemble can coordinate the concurrent evaluation of the

simulation sim_f at various parameter values and gen_f would return
candidate parameter values (possibly after each sim_f output).

Naturally, combinations of use cases is supported as well.

11 of 21.



Use cases

I A user has a gen_f that produces different meshes to be used within
a sim_f.

I Given the sim_f output, gen_f will refine a mesh or produce a new
mesh.

I libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data.

Naturally, combinations of use cases is supported as well.
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I A user wants to evaluate a simulation sim_f at parameters sampled
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Use cases

I A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities.

I libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with a
poor parameter values.

Naturally, combinations of use cases is supported as well.
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Use cases

I A user wishes to identify multiple local optima for a sim_f.
I libEnsemble can use the points from the APOSMM gen_f to

identify optima
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Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.
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Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.
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Multi-Level Single Linkage

I f ∈ C 2, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.
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APOSMM

Iteration: 0; r_k: Inf
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APOSMM

Iteration: 1; r_k: 0.743

16 of 21.



APOSMM

Iteration: 2; r_k: 0.743
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APOSMM

Iteration: 3; r_k: 0.689
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APOSMM

Iteration: 4; r_k: 0.643
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APOSMM

Iteration: 5; r_k: 0.605
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APOSMM

Iteration: 6; r_k: 0.605
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APOSMM

Iteration: 7; r_k: 0.605
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APOSMM

Iteration: 8; r_k: 0.605
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APOSMM

Iteration: 9; r_k: 0.605
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APOSMM

Iteration: 10; r_k: 0.605
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APOSMM

Iteration: 35; r_k: 0.605
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APOSMM

Iteration: 36; r_k: 0.605
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APOSMM

Iteration: 37; r_k: 0.589
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APOSMM

Iteration: 38; r_k: 0.574
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APOSMM

Iteration: 39; r_k: 0.560
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APOSMM

Iteration: 40; r_k: 0.548
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APOSMM

Iteration: 41; r_k: 0.536
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APOSMM

Iteration: 42; r_k: 0.525
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APOSMM

Iteration: 43; r_k: 0.515
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APOSMM

Iteration: 44; r_k: 0.497
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APOSMM

Iteration: 45; r_k: 0.480
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APOSMM

Iteration: 80; r_k: 0.281
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APOSMM

Iteration: 81; r_k: 0.279
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APOSMM

Iteration: 82; r_k: 0.276
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APOSMM

Iteration: 83; r_k: 0.274
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APOSMM

Iteration: 84; r_k: 0.272
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APOSMM

Iteration: 85; r_k: 0.270
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APOSMM

Iteration: 86; r_k: 0.268
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APOSMM

Iteration: 87; r_k: 0.266
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APOSMM

Iteration: 88; r_k: 0.264
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APOSMM

Iteration: 89; r_k: 0.263
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APOSMM

Iteration: 90; r_k: 0.262
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APOSMM

Iteration: 91; r_k: 0.261

16 of 21.



APOSMM

Iteration: 92; r_k: 0.260
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APOSMM

Iteration: 93; r_k: 0.259
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APOSMM

Iteration: 94; r_k: 0.258

16 of 21.



APOSMM

Iteration: 95; r_k: 0.257
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APOSMM

Iteration: 96; r_k: 0.256
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APOSMM

Iteration: 97; r_k: 0.255
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APOSMM

Iteration: 98; r_k: 0.255
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APOSMM

Iteration: 99; r_k: 0.254

16 of 21.



Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run
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Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.
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Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ( n
2 +1)

πn/2 .
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Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

19 of 21.



Data Profiles
Within n

√
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20 of 21.



Data Profiles
Within n

√
10−3Γ( n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.



Data Profiles
Within n

√
10−4Γ( n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

20 of 21.



Data Profiles
Within n

√
10−4Γ( n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.



Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

20 of 21.



Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.



Closing Remarks

I libEnsemble is a software library to coordinate the concurrent
evaluation of calculations.

I We have a growing set of use cases and examples.

I Let us know if you have examples you’d like to see.
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